Geometric gradient-flow dynamics with singular solutions
نویسندگان
چکیده
The gradient-flow dynamics of an arbitrary geometric quantity is derived using a generalization of Darcy’s Law. We consider flows in both Lagrangian and Eulerian formulations. The Lagrangian formulation includes a dissipative modification of fluid mechanics. Eulerian equations for self-organization of scalars, 1-forms and 2-forms are shown to reduce to nonlocal characteristic equations. We identify singular solutions of these equations corresponding to collapsed (clumped) states and discuss their evolution.
منابع مشابه
Interaction of Particles with Non-central Potential: Gradient Flows and Singular Solutions for Evolution of Geometric Continuum Quantities
Evolutionary PDEs for geometric order parameters that admit propagating singular solutions are introduced and discussed. These singular solutions arise as a result of the competition between nonlinear and nonlocal processes in various familiar vector spaces. Several examples are given. The motivating example is the directed self assembly of a large number of particles for technological purposes...
متن کاملSingular Perturbations of Finite Dimensional Gradient Flows
In this paper we give a description of the asymptotic behavior, as ε → 0, of the ε-gradient flow in the finite dimensional case. Under very general assumptions we prove that it converges to an evolution obtained by connecting some smooth branches of solutions to the equilibrium equation (slow dynamics) through some heteroclinic solutions of the gradient flow (fast dynamics).
متن کاملA General New Algorithm for Regulaization of Singular Integrals in Three-Dimensional Boundary Elemnts
In this paper an algorithm is presented for the regularization of singular integrals with any degrees of singularity, which may be employed in all three-dimensional problems analyzed by Boundary Elements. The integrals in Boundary Integrals Equations are inherently singular. For example, one can mention the integrals confronted in potential problems to evaluate the flow or the gradient of the f...
متن کاملA General New Algorithm for Regulaization of Singular Integrals in Three-Dimensional Boundary Elemnts
In this paper an algorithm is presented for the regularization of singular integrals with any degrees of singularity, which may be employed in all three-dimensional problems analyzed by Boundary Elements. The integrals in Boundary Integrals Equations are inherently singular. For example, one can mention the integrals confronted in potential problems to evaluate the flow or the gradient of the f...
متن کاملGeometric evolution equations for order parameters
Energy-decreasing continuum flows of geometric order parameters are considered. The dynamics of pattern formation for an arbitrary geometric quantity is derived using a generalization of Darcy’s law based on the geometric nature of the order parameter. We consider flows in both Lagrangian and Eulerian formulations. The Lagrangian formulation includes a dissipative modification of fluid mechanic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008